Influence of IACS New Wave Data on Design Values of Ship Vertical Wave Induced Load

YAGN Jun, WANG Xueliang, ZHANG Fan, WANG Yitao

Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (12) : 57-67.

PDF(2749 KB)
PDF(2749 KB)
Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (12) : 57-67. DOI: 10.7643/ issn.1672-9242.2025.12.008
Ships and Marine Engineering Equipment

Influence of IACS New Wave Data on Design Values of Ship Vertical Wave Induced Load

  • YAGN Jun1,2,3, WANG Xueliang1,2,3, ZHANG Fan1,2, WANG Yitao1,2,3
Author information +
History +

Abstract

The work aims to study the features of the new wave data and compare the differences between the old and new wave data. With a chemical tanker, a LNG carrier and a cruise as research objects, hull motions and vertical wave induced loads were calculated. Long term prediction values of wave induced load based on old and new wave data for these ships were obtained, and the influence of the wave data on design values of load was analyzed. The results showed that the covering areas, wave scatter diagram, wave spectrum, wave spreading function and recommended calculation speed in the new No. 34 wave data were modified. Based on the new wave data, the predicted vertical shear force at the midship section decreased by 18% to 28%, meanwhile vertical bending moment decreased by 11% to 15%. The recommended speed was changed from 0 to 5 knots, which had a relatively small influence on vertical shear force and bending moment. Overall, the new wave data indicates a moderation in the severity of the North Atlantic sea states, which causes a decrease in the design values of the vertical shear force and bending moment.

Key words

IACS / wave data / wave induced load / wave scatter diagram / wave spectrum / long term prediction

Cite this article

Download Citations
YAGN Jun, WANG Xueliang, ZHANG Fan, WANG Yitao. Influence of IACS New Wave Data on Design Values of Ship Vertical Wave Induced Load[J]. Equipment Environmental Engineering. 2025, 22(12): 57-67 https://doi.org/10.7643/ issn.1672-9242.2025.12.008

References

[1] 顾学康. 船舶结构的直接设计[D]. 无锡: 中国船舶科学研究中心, 1999.
GU X K.Direct Design of Ship Structures[D]. Wuxi: China Ship Scientific Research Center, 1999.
[2] 王常甫, 俞慕. 北大西洋风浪特征研究[J]. 气象科学, 1999, 19(2): 179-182.
WANG C F, YU M.A Note on the Features of Wind Sea in the Northern Atlantic Ocean[J]. Scientia Meteorologica Sinica, 1999, 19(2): 179-182.
[3] 徐秀枝, 熊巧文, 田秋实, 等. 北大西洋海浪特征分析[J]. 中国水运, 2020(3): 106-107.
XU X Z, XIONG Q W, TIAN Q S, et al.Analysis of Wave Characteristics in North Atlantic Ocean[J]. China Water Transport, 2020(3): 106-107.
[4] 顾媛媛. 船舶设计中波浪与风的统计分析和数据库集成[D]. 上海: 上海交通大学, 2008.
GU Y Y.Statistical Analysis and Database Integration of Wave and Wind in Ship[D]. Shanghai: Shanghai Jiao Tong University, 2008.
[5] 竺艳蓉, 谢峻, 龚佩华. 各种波浪谱在海洋工程中适用性的研究[J]. 海洋学报, 1995, 17(6): 126-131.
ZHU Y R, XIE J, GONG P H.Study on the Applicability of Various Wave Spectra in Ocean Engineering[J]. Acta Oceanologica Sinica, 1995, 17(6): 126-131.
[6] 管长龙. 我国海浪理论及预报研究的回顾与展望[J]. 青岛海洋大学学报(自然科学版), 2000, 30(4): 549-556.
GUAN C L.A Review of History and Prospect for Study of Sea Wave Theory and Its Forecast in China[J]. Journal of Ocean University of Qingdao, 2000, 30(4): 549-556.
[7] SOARES C G, MOAN T.Model Uncertainty in the Long-Term Distribution of Wave-Induced Bending Moments for Fatigue Design of Ship Structures[J]. Marine Structures, 1991, 4(4): 295-315.
[8] 陈瑞章, 沈进威. 波浪弯矩设计值与长期预报理论计算值的比较[J]. 中国造船, 1996, 37(4): 41-44.
CHEN R Z, SHEN J W.The Comparison of the Ship wave-Induced Bending Moment between Iacs Ur S11 and long-Term Prediction[J]. Shipbuilding of China, 1996, 37(4): 41-44.
[9] 顾学康, 陈瑞章, 沈进威, 等. 海浪统计资料对船舶波浪弯矩设计值的影响及其意义[J]. 船舶力学, 1998, 2(5): 50-62.
GU X K, CHEN R Z, SHEN J W, et al.The Effects of Wave Data on Ship Design Bending Moments and Its Significance[J]. Journal of Ship Mechanics, 1998, 2(5): 50-62.
[10] 李辉, 张艺瀚, 任慧龙. 船舶波浪载荷长短期预报方法及其特性研究[J]. 华中科技大学学报(自然科学版), 2013, 41(12): 112-116.
LI H, ZHANG Y H, REN H L.Long/Short Term Prediction of Ship Wave Loads and Its Characteristics[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2013, 41(12): 112-116.
[11] 顾永宁, 滕晓青, 戴立广. 大开口型船舶波浪诱导载荷研究[J]. 船舶工程, 1998, 20(4): 5-8.
GU Y N, TENG X Q, DAI L G.A Study on the Long Term Prediction of Wave Induced Loads for the Ship with Large Hatch Openings[J]. Ship Engineering, 1998, 20(4): 5-8.
[12] 李刚强, 谢永和. 肥大型集装箱船波浪诱导载荷研究[J]. 浙江海洋学院学报(自然科学版), 2009, 28(2): 125-129.
LI G Q, XIE Y H.Study on the Wave-Induced Loads of the Fat-Type Container Ship[J]. Journal of Zhejiang Ocean University (Natural Science), 2009, 28(2): 125-129.
[13] 胡嘉骏, 张凡, 汪雪良, 等. 三体船波浪载荷模型试验结果推断及设计载荷的确定[C]//中国钢结构协会海洋钢结构分会2010年学术会议暨第六届理事会第三次会议论文集. 洛阳: 中国钢结构协会海洋钢结构分会, 2010.
ZHANG F, WANG X L.Wave-Induced Loads Forecast and Design Loads Determine Based on the Model Test of a Trimaran[C]//2010 Academic Conference of Sub-Association for Marine and Offshore Steel Structures. Luoyang: Sub-Association for Marine and Offshore Steel Structures, 2010.
[14] 吴小平. 基于切片理论的波浪载荷直接计算[J]. 上海造船, 2010, 26(4): 21-25.
WU X P.Direct Calculation of Wave Loads Based on Strip Theory[J]. Shanghai Shipbuilding, 2010, 26(4): 21-25.
[15] 张文华, 刘光明, 吴卫国. 江海通航散货船波浪载荷研究[J]. 武汉理工大学学报(交通科学与工程版), 2011, 35(4): 752-755.
ZHANG W H, LIU G M, WU W G.Investigation on the Wave Loads of River-Sea Bulk Carriers[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2011, 35(4): 752-755.
[16] 耿彦超, 胡嘉骏, 顾学康, 等. 高速三体船波浪设计载荷比较研究[J]. 船舶力学, 2014, 18(S1): 75-82.
GENG Y C, HU J J, GU X K, et al.Comparative Study on Wave Design Load of High-Speed Trimaran[J]. Journal of Ship Mechanics, 2014, 18(S1): 75-82.
[17] 罗慧明, 陈亮亮, 邓建通, 等. 扁平船舶波浪载荷预报研究[J]. 船舶工程, 2016, 38(5): 1-4.
LUO H M, CHEN L L, DENG J T, et al.Research on Prediction of Flat Ship Wave Loads[J]. Ship Engineering, 2016, 38(5): 1-4.
[18] 刘光明, 陈钰, 毛筱菲. 内河船舶波浪载荷计算预报及规律[J]. 船舶工程, 2017, 39(10): 8-11.
LIU G M, CHEN Y, MAO X F.Prediction and Law of Wave Load Calculation of Inland Ship[J]. Ship Engineering, 2017, 39(10): 8-11.
[19] 徐敏, 王刚, 郑刚. 南海特定水域航行船舶波浪载荷研究[J]. 船舶, 2024, 35(6): 121-128.
XU M, WANG G, ZHENG G.Study on the Wave Loads of Ships Navigating in Specific Water Area of the South China Sea[J]. Ship & Boat, 2024, 35(6): 121-128.
[20] 李平, 王红博, 陈超核. 基于长、短期设计波的浮式风机平台结构强度研究[J]. 华南理工大学学报(自然科学版), 2025, 53(2): 92-106.
LI P, WANG H B, CHEN C H.Research on the Structural Strength of Floating Offshore Wind Turbine Platform Based on Long and Short Term Design Waves[J]. Journal of South China University of Technology (Natural Science Edition), 2025, 53(2): 92-106.
[21] BALES S, LEE W T, VOELKER J M.Standardized Wave and Wind Environments for NATO Operational Areas[R]. Maryland: David Taylor Naval Ship Research and Development Center, 1981
[22] 戴仰山, 沈进威, 宋竞正. 船舶波浪载荷[M]. 北京: 国防工业出版社, 2007: 11.
DAI Y S, SHEN J W, SONG J Z.Ship Wave Loads[M]. Beijing: National Defense Industry Press, 2007: 11.
[23] International Association of Classification Societies. Recommendations No.34 Standard Wave Data: Rev.1 Corr.1[S]. London: International Association of Classification Societies, 2001.
[24] HOBEN N, DACUNBA L F, OLLIVER H N.Global Wave Statistics[M]. London: Unwin Brothers Limited, 1986.
[25] International Association of Classification Societies. Recommendations No.34 Standard Wave Data:Rev.2[S]. London: International Association of Classification Societies, 2022.
[26] International Association of Classification Societies. History Files and Technical Background documents for Recommendations[R].London: IACS, 2025.
[27] DNV. SESAM User Manual: HydroD[R]. Oslo: DNV, 2008.
PDF(2749 KB)

Accesses

Citation

Detail

Sections
Recommended

/